MeesterDaan (talk | contribs) (→Kanjis & Small-Worlds) |
MeesterDaan (talk | contribs) (→Japanese Kanji Characters) |
||
Line 11: | Line 11: | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
− | The whole idea was quite simple actually, born from the language enthousiasm of three programmers. Japanese is not an easy language of choice, as it features a 60,000-piece character set named ''Kanji''. Although you 'only' need to learn about 2,000 to read the language, this is still a formidable exercise. There is some systematicity though, as many Kanji are composed of one or more of 252 components. Individual Kanji-characters are said to carry meaning in a word-like manner, and akin to how compound words are built up ("swordfish", "snowball", "fireplace"), kanji often derive meaning from the combination of components, and are often explained as such in textbooks for Japanese children and foreign students of the language. | + | The whole idea was quite simple actually, born from the language enthousiasm of three programmers. But Japanese is not an easy language of choice, as it features a 60,000-piece character set named ''Kanji''. Although you 'only' need to learn about 2,000 to read the language, this is still a formidable exercise in itself. There is some systematicity though, as many Kanji are composed of one or more of 252 components, and some combinations are more common tha others. Individual Kanji-characters are said to carry meaning in a word-like manner, and akin to how compound words are built up ("swordfish", "snowball", "fireplace"), kanji often derive meaning from the combination of components, and are thus often explained as such in textbooks for Japanese children and foreign students of the language. |
− | But the process of Japanese language aquisition is quite different for | + | But the process of Japanese language aquisition is quite different for Dutch adults than for Japanese children. Adult language learners do not easily take things for granted, have trouble accepting things "as they are", and are more aware of the (in)consistencies they encounter when studying a language. We, as programmers, tried to 'understand the system' of written Japanese, drawing out networks, connecting two characters if they shared one or more components. One thing led to another, and as we got access to electronic dictionary files listing all Kanji and their constituent components, we could eventually analyze the connected-Kanji-network as a whole. The results were quite surprising, and actually turned out to fit in quite nicely with the existing scientific literature of language networks. |
Revision as of 13:47, 5 February 2018
Contents
Paper
I'm still working on this page, but our paper is here. I (Daan van den Berg) welcome all feedback you might have. Look me up in the UvA-directory, on LinkedIn or FaceBook.
Japanese Kanji Characters
The whole idea was quite simple actually, born from the language enthousiasm of three programmers. But Japanese is not an easy language of choice, as it features a 60,000-piece character set named Kanji. Although you 'only' need to learn about 2,000 to read the language, this is still a formidable exercise in itself. There is some systematicity though, as many Kanji are composed of one or more of 252 components, and some combinations are more common tha others. Individual Kanji-characters are said to carry meaning in a word-like manner, and akin to how compound words are built up ("swordfish", "snowball", "fireplace"), kanji often derive meaning from the combination of components, and are thus often explained as such in textbooks for Japanese children and foreign students of the language.
|
Kanjis & Small-Worlds
The network of connected Kanji turned out to be a small-world network, which means it has a high clustering coefficient, a low average path length and a low connection density. At the time, computational linguists had already found a large number of small-world networks in different languages on various levels, but this network of Kanji sharing components was not yet one of them.
|
![]() The functional connectivity graph of the brain is one of many well known small-worlds See Sporns & Honey (2006) and others. Image adapted from Sporns' book "Discovering the Human Connectome" |
Clustering Coefficient & Average Path Length (optional)
First let's have a brief look at what makes a small-world network a small-world network. First of all: it's about sparse networks, that is, networks with relatively low edge densities. Small-World networks have a high clustering coefficient. The clustering coefficient on a vertex is the fraction of connections between its neighbours. Vertex C has four neighbours. Between these four we have three edges, out of a possible six, so the clustering coefficient on C is 0.5. Similarly, the clustering coefficient on B is 1, and on F it is 0.33 if we disregard the two neighbours it must have outside the picture. If we don't disregard those, it has five neighbours with either one or two connections between them, so the clustering coefficient on F would be either 0.1 or 0.2. The cluster coefficient of the network is simply the average of all its vertices.
|
Gelb's Hypothesis: from pictures to sounds
So many language networks have small-world properties. But for Japanese, there's a little more to it. Because as it turns out, there's an old conjecture by Ignacy Jay Gelb (1907-1985) and it appears to coincide with our findings. An American linguist from Polish descent, Gelb conjectured that all written languages go through a phase transition from being picture-based to being sound-based. Studied in more detail, the idea is quite coarse and the exact trajectory might differ from language to language, but the core concept remains alluring, especially where it concerns Japanese Kanji.
|
![]() Ignace Jay Gelb (1907-1985), and his hypothesis as visualized by Tadao Miyamoto in his 2007-paper. Note how these initially quite pictorial characters in this Cuneiform script evolve to a set of characters built up from relatively repetitive components. |
Kanjis correspond to sounds too
So it seems that succesive disappearance of visual features accounts for the clustering found in the network of Kanji. In other words: Kanji have become simpler through time. They are nowhere near the elaborate pictures they were around 2,000 years ago, but in many ways symbolic abstractions of their ancient precursors.
|
![]() Kanji evolution through time. Notice how visual similarity has increased, especially between 'horse' and 'fish'. Adapted from www.tofugu.com |
![]() These seven characters all share a visual component, and a pronunciation ("rei"). Although Kanji meaning are often explained through combined components, this explanation looks unconvincing in some cases. Do components really add an element of meaning to a Kanji? Or is it actualy an element of sound? |
The Team
|
More
Maybe later.