
Plant Propagation & Hard Hamiltonian Graphs

Joeri Sleegers1[0000−0003−1701−6319]

Daan van den Berg1[0000−0001−5060−3342]

Universiteit van Amsterdam
joeri.sleegers@student.uva.nl, d.vandenberg@@uva.nl

Abstract. Although the Hamiltonian cycle problem is known to be NP-
complete, only a few graphs are actually hard to decide for complete
backtracking algorithms running on large ensembles of random graphs.
Historically, these hard instances are found near the Komlós-Szemerédi
bound, the average vertex degree where the Hamiltonian probability
phase transition occurs. In this preliminary investigation, we take a differ-
ent approach, generating hard graphs with two evolutionary algorithms.
We find completely new and counterintuitive results.

Keywords: Hamiltonian cycle problem · instance hardness · phase tran-
sition · evolutionary algorithms · plant propagation algorithm

1 The Hamiltonian cycle problem

The undirected Hamiltonian cycle problem involves deciding whether a given
graph of v vertices and average degree d contains a closed path that visits ev-
ery vertex exactly once. Known to be NP-complete, quite a few complete algo-
rithms exist for the problem, but none of those runs in subexponential time. The
dynamic programming Help-Karp algorithm is quite memory intensive, but by
O(n2 ·2n) still holds the lowest time complexity [3]. Depth-first based algorithms
such as Cheeseman’s, Van Horn’s, Rubin’s, and Vandegriend-Culberson’s are far
more memory efficient, but take more time in the theoretical worst case: O(v!)
[1][4][7][12]. Even for the least sophisticated of these algorithms however, the
majority of randomly generated graphs is relatively easily decided. Low-degree
graphs require few recursions, so an exhaustive search is quickly completed.
High-degree graphs however, contain many Hamiltonian cycles, so one is easily
found. The hardest graphs reside in between, right around the Komlós-Szemerédi
bound of average degree v · ln(v) + v · ln(ln(v)) edges, where the probability
of a random graph being Hamiltonian goes from almost zero to almost one as d
increases [5].

More sophisticated backtracking algorithms such as Vandegriend-Culberson’s
comb out many of these hard graphs using early-decision techniques, clever prun-
ing and sensible next-vertex heuristics. For this study, we will use a backtracking
algorithm that prioritizes low-degree vertices over high-degree vertices, deploys
two edge pruning techniques (path pruning and neighbor pruning) and several
checks for non-Hamiltonicity (such as degree-one nodes). This algorithm, which



2 Sleegers & Van den Berg

inherits most of its techniques directly from Vandegriend-Culberson’s, outper-
forms all aforementioned backtracking algorithms on large ensembles of ran-
domly generated graphs (results are to be published). For precise algorithmic
details, we’ll refer the reader to our open-source repository [11].

But even though all these advances reduce the average decision time dra-
matically, the hardest graphs still reside around the Komlós-Szemerédi bound
in these random ensembles. In this preliminary investigation, we take a different
approach, ‘optimizing’ graphs to be as hard as possible for this algorithm. Re-
markably enough, the resulting graphs, which are indeed very hard, reside in a
totally different part of the combinatorial state space.

Fig. 1. The hardest Hamiltonian graphs of 12, 16 and 20 vertices found by a hillclimber
(top row) and a plant propagation algorithm (bottom row). Graphs appear to converge
to a ’hamburger structure’, with a ‘fat layer’ of high degree vertices in the middle,
flanked by two ‘lighthweight’ layers of low degree vertices on either side.

2 Two Evolutionary Algorithms

We use two evolutionary algorithms to make hard graphs: a hillclimber and a
plant propagation algorithm [10][8]. For both, the fitness (or objective value)
is given by the number of recursions needed by the backtracking algorithm de-
scribed in Section 1. So the more recursions, the longer the decision time, the
harder the graph, and the higher its fitness.



Plant Propagation & Hard Hamiltonian Graphs 3

The hillclimber starts off from a random graph of v = {12, 16, 20} vertices,
and edge degree d = b v · ln(v) + v · ln(ln(v))c. Its inception thereby lies exactly
on the Komlós-Szemerédi bound, where we would historically expect the hardest
graphs to reside [1][4][12]. Each iteration, one of three possible mutation types is
randomly chosen and applied: to insert an edge at a random unoccupied place
in the graph, to randomly delete an existing edge from the graph, and to move
and edge, which is effectively equal to a delete-mutation followed by an insert-
mutation (on a different unoccupied place). The mutated graph is kept iff fitter,
and the mutation is reverted otherwise. An important observation herefrom is
that the graphs do not necessarily retain their initial connectivity throughout
the evolutionary process, which is somewhat uncommon in this kind of study.
But it’s exactly this relaxation that provides us with some surprising results.

The plant propagation algorithm is a population-based evolutionary algo-
rithm that can be applied to a broad spectrum of continuous, discrete and mixed
objective landscapes in scientific, industrial and even artistic optimization prob-
lems [8][9][2][13][6]. To meet these different requirements, various adaptations
have been implemented but the core of the algorithm is always the same: a pop-
ulation of solutions from which fitter individuals spawn many offspring with few
mutations, and unfitter individuals spawn few offspring with many mutations, all
in an effort to balance the powers of exploration and exploitation in a problem’s
state space.

The version in this experiment is most closely related to the variants used for
optimizing the traveling salesman and timetabling problems [9][2]. Maintaining a
constant-sized population of 10 individuals (i.e. undirected graphs) descendingly
sorted to fitness (i.e. number of recursions needed to decide the graph), the two
fittest individuals each spawn five offspring (i.e. new graphs) which all receive one
random mutation. Iff any of these offspring is fitter than its parent, it replaces
it. The eight unfitter individuals each spawn one offspring which receives 20
mutations, and again replaces its parent when fitter.

3 Experiment and Results

Both algorithms get 30 random initializations, 10 for each v ∈ {12, 16, 20} and a
corresponding e ∈ {15, 23, 31} – exactly on the Komlós-Szemerédi bound – after
which they are run for exactly 500 function evaluations of either evolutionary
algorithm. These numbers might appear small, but as we are pushing towards
the bounds of an NP-complete problem, a single evaluation can easily take up
millions of recursions, even for graphs this small.

Both algorithms find hard graphs in all size categories. In most ensembles,
more than half of the evolutionary runs generates graphs requiring over 10,000
recursions, sometimes even ranging in the millions (Table 1). The hillclimber
appears to outperform plant propagation in finding hard graphs which is in
some sense remarkable as it is prone to getting stuck in local maxima. This
might indicate that the graph hardness landscape is largely convex, but it is
also not unthinkable that in longer runs, PPA would eventually outperform the



4 Sleegers & Van den Berg

hillclimber, as has been witnessed before [2]. What is quite remarkable though,
is that all configurations appear to converge to a ’hamburger structure’, with
approximately 40% ’fat’ nodes of high degree being sandwiched between two
layers of 30% ‘light’ nodes of low degree. (Fig. 1).

But what is even more remarkable, is that these graphs all have an edge
degree that lies considerably higher than the Komlós-Szemerédi bound where
previous investigations by Cheeseman et al., Van Horn et al. and Vandegriend
& Culberson found the hardest graphs. There might be several not-so-trivial
explanations for this.

4 Discussion

A first explanation for these surprising results is that these results are specific
for the backtracking algorithm we used. This is unlikely however, as the algo-
rithm minimizes most other backtracking algorithms found in literature (yet
unpublished results). Put differently: chances are very high that these graphs
are also hard for other complete backtracking algorithms but evidence pending,
this possibility can not be completely ruled out.

A second explanation might be that in most studies on Hamiltonian cycle
backtracking algorithms, runs are cutoff after a preset number of recursions, as
even small graphs can take up significant decision time. However, these cutoff
points are usually situated near the Komlós-Szemerédi bound, and not in edge-
dense regions where the ‘hamburger graphs’ would be located.

The most tempting explanation might therefore come from the fact that on
first glance, these graphs have low Kolmogorov complexity – they are structured.
As unstructured objects in any randomly generated ensemble vastly outnumber
the structured objects, the chances of being created by a stochastic process
(which is the case in most large-scale comparative studies) are microscopic. One
would simply not find them unless knowing where to look. These graphs are an
isolated island of structured hardness in an ocean of unstructured ease. Whether
more such islands exist, and what they look like, awaits further exploration.

Table 1. Both the hillclimber and plant propagation are succesful in finding hard-to-
decide graphs within 500 function evaluations on 6x10 graphs of different sizes v. The
two last columns are the number of graphs which required over 10,000 recursions, their
average degree, and in brackets their expected average degree based on the Komlós-
Szemerédi bound.

size algorithm max recursions avg recursions over 10K avg deg

12 HC 61,051 36,413 6/10 7.61 (2.56)
12 PPA 12,479 3,395 2/10 6.67 (2.56)
16 HC 198,557,095 19,908,439 6/10 7.84 (2.84)
16 PPA 211,475 43,475 5/10 6.38 (2.84)
20 HC 99,742,171 10,063,317 7/10 6.47 (3.05)
20 PPA 1,130,923 357,725 8/10 6.08 (3.05)



Plant Propagation & Hard Hamiltonian Graphs 5

References

1. Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard problems
are. In: IJCAI. vol. 91, pp. 331–337 (1991)

2. Geleijn, R., van der Meer, M., van der Post, Q., van den Berg, D.: The plant
propagation algorithm on timetables: First results. EVO* 2019 p. 2

3. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied mathematics 10(1), 196–210
(1962)

4. van Horn, G., Olij, R., Sleegers, J., van den Berg, D.: A predictive data analytic
for the hardness of hamiltonian cycle problem instances. DATA ANALYTICS 2018
p. 101 (2018)

5. Komlós, J., Szemerédi, E.: Limit distribution for the existence of hamiltonian cycles
in a random graph. Discrete Mathematics 43(1), 55–63 (1983)

6. Paauw, M., Van den Berg, D.: Paintings, polygons and plant propagation. Springer
(2019)

7. Rubin, F.: A search procedure for hamilton paths and circuits. Journal of the ACM
(JACM) 21(4), 576–580 (1974)

8. Salhi, A., Fraga, E.S.: Nature-inspired optimisation approaches and the new plant
propagation algorithm (2011)

9. Selamoğlu, B.İ., Salhi, A.: The plant propagation algorithm for discrete optimisa-
tion: The case of the travelling salesman problem. In: Nature-inspired computation
in engineering, pp. 43–61. Springer (2016)

10. Skiena, S.S.: The algorithm design manual: Text, vol. 1. Springer Science & Busi-
ness Media (1998)

11. Sleegers, J.: Source code. https://github.com/Joeri1324/

What-s-Difficult-About-the-Hamilton-Cycle-Poblem- (2020)
12. Vandegriend, B., Culberson, J.: The gn, m phase transition is not hard for the

hamiltonian cycle problem. Journal of Artificial Intelligence Research 9, 219–245
(1998)

13. Vrielink, W., van den Berg, D.: Fireworks algorithm versus plant propagation al-
gorithm. In: IJCCI. pp. 101–112 (2019)

https://github.com/Joeri1324/What-s-Difficult-About-the-Hamilton-Cycle-Poblem-
https://github.com/Joeri1324/What-s-Difficult-About-the-Hamilton-Cycle-Poblem-

	Plant Propagation & Hard Hamiltonian Graphs

