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Abstract. We investigate a wide range of interdependent parameter val-
ues for the number of offspring and the population size in the plant prop-
agation algorithm. An ‘optimal window’ of parameter values is found,
for which the algorithm performs substantially better on five benchmark
test functions. Moreover, apart from being within or outside the window,
values appear to be largely interchangable, making the algorithm largely
independent from specific settings of these parameters.
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1 Introduction

In recent years, a booming interest has emerged for the implementation of nature-
inspired evolutionary algorithms on combinatorial optimization problems. How-
ever, the large variety of new algorithms is often not tested thoroughly, and
therefore “threatening to lead the area of metaheuristics away from scientific
rigor” [7]. As one example, the vast number of possible parameter configurations
often form new combinatorial optimization problems in themselves, and deter-
mining the ’perfect’ settings thereby, becomes a challenging task. Unfortunately,
relatively little analysis is done on optimal parameterization in many evolution-
ary algorithms, despite being “essential for good algorithm performance” [6].

One such algorithm is the Plant Propagation Algorithm (PPA), introduced
by Abdellah Salhi and Eric S. Fraga in 2011, which works well on a broad variety
of benchmark functions, as well as discrete problems such as the traveling sales-
man problem, university timetabling and even artistic optimization tasks [4] [8]
[5] [1] [3]. After randomly initializing popSize initial individuals, the objective

values f(x) are calculated, and normalized to [0,1] by z(xi) = f(xmax)−f(xi)
f(xmax)−f(xmin)

after which the hyperbolic tangent F (xi) = 1
2 (tanh(4·z(xi)−2)+1) is applied to

“[provide a means of emphasising further better solutions over those which are
not as good]” [4]. Then, the number of offspring per individual is proportional
to its fitness as n(xi) = dnmaxF (xi)re, whereas their mutability is inversely
proportional as dr,j = 2(1− F (xi))(r− 0.5), in which j is the respective dimen-
sion; r is a different random number for both equations. Fitter individuals will
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(a) Branin (b) Easom (c) Goldstein Price

(d) Martin Gaddy
(e) Six Hump Camel

Fig. 1: The five 2D benchmark test functions on which the different parameter
values of popSize and nmax were tested during a minimization task.

thereby spawn relatively many offspring with smaller mutations, whereas unfit-
ter individuals produce fewer offspring with larger mutations. In the final step,
the offspring get added to the population, from which popSize fittest individuals
constitute the next generation.

As Salhi and Fraga themselves point out in their seminal work ”[parameter
values chosen appear suitable for the problems investigated, [but] little analysis
has been performed to understand the impact of these parameters]” [4]. Here, we
perform a first investigation into two interdependent parameters: the population
size (popSize) and the maximum number of offspring per individual (nmax). We
explore 400 parameter settings of PPA on five different continuous 2D benchmark
test functions (Fig.1) from the original study.

2 Experiment & Results

To rigorously test the two parameters, the algorithm was ran with 400 different
parameter combinations on all five benchmark test functions with their global
minimum set to zero. We choose 1 ≤ popSize ≤ 40, 1 ≤ nmax ≤ 10, and the
median best objective value of ten separate runs of the algorithm was taken for
each parameter combination (Fig. 2). One run consisted of 10,000 evaluations,
amounting in a total of 200 million function evaluations for the whole experiment.
It should be noted though, that popSize and nmax are interdependent in the
number of offspring per generation, so these parameter settings are expected to
bring along different numbers of generations per combination.
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Fig. 2: Results for a wide range of parameter values for popSize and nmax in
PPA on five different benchmark test functions with a zero-normalized global
minimum. Each cell represents the median best objective value over 10 runs of
10,000 function evaluations. A consistent window of parameter values (dashed
lines) provides significantly better results for all five functions.

The results show a window of parameter configurations that consistently work
better than others. For all five of the tested benchmark functions, parameter
values 1 ≤ popSize ≤ 4 and 1 ≤ nmax ≤ 9 result in significantly better found
objective values (Table 1). But moreover, the differences in standard deviation
are small both inside and outside the window, which leaves room for a tantalizing
point of discussion.

3 Discussion & Future work

Ceteris paribus, it looks like the plant propagation algorithm is largely unsen-
sitive to parameter settings. As can be seen from the heatmap, the only real
difference appears whether one chooses a setting inside the window or outside
the window, as for both these subsets, their respective standard deviation on the
best performance is low.
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Inside window Outside window

Function µ σ µ σ

Branin 5.79e-05 2.46e-05 1.94e-04 7.70e-05

Easom 3.83e-03 1.84e-03 1.66e-02 6.87e-03

Goldstein Price 3.41e-04 1.25e-04 1.11e-03 4.53e-04

Martin Gaddy 6.52e-05 2.94e-05 2.34e-04 9.57e-05

Six Hump camel 8.90e-06 3.22e-06 2.96e-05 1.22e-05

Table 1: Overview of the mean and standard deviation per benchmark test func-
tion, both within and outside the window of optimal configurations. For each
of the functions, the mean best value inside is better than outside this window
range. But the standard deviations are low, so apart from the inside-outside-
window choice, the algorithm is quite robust against different parameter settings.

Whether these results are consistent across a broader range of benchmark
test functions, or more real-worldly problems such as timetabling or the trav-
eling salesman problem, remains to be seen. Finally, we encourage other teams
to check, replicate and extend our results, either with or without our publicly
accessible repository [2].
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